Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus
نویسندگان
چکیده
Erianthus arundinaceus is an important wild species of the genus Saccharum with many valuable traits. However, the composition and structure of its genome are largely unknown, which have hindered its utilization in sugarcane breeding and evolutionary research. Retrotransposons constitute an appreciable fraction of plant genomes and may have played a significant role in the evolution and sequence organization of genomes. In the current study, we investigate the phylogenetic diversity and genomic abundance of Ty1-copia retrotransposons for the first time and inspect their chromosomal distribution patterns in E. arundinaceus. In total, 70 Ty1-copia reverse transcriptase (RT) sequences with significant levels of heterogeneity were obtained. The phylogenetic analysis revealed these Ty1-copia retrotransposons were classified into four distinct evolutionary lineages (Tork/TAR, Tork/Angela, Retrofit/Ale, and Sire/Maximus). Dot-blot analysis showed estimated the total copy number of Ty1-copia retrotransposons to be about 4.5 × 103 in the E. arundinaceus genome, indicating they were a significant component. Fluorescence in situ hybridization revealed that Ty1-copia retrotransposons from the four lineages had strikingly similar patterns of chromosomal enrichment, being exclusively enriched in the subterminal heterochromatic regions of most E. arundinaceus chromosomes. This is the first clear evidence of the presence of Ty1-copia retrotransposons in the subterminal heterochromatin of E. arundinaceus. Altogether, these results promote the understanding of the diversification of Ty1-copia retrotransposons and shed light on their chromosomal distribution patterns in E. arundinaceus.
منابع مشابه
Reverse transcriptase domain sequences from tree peony (Paeonia suffruticosa) long terminal repeat retrotransposons: sequence characterization and phylogenetic analysis
Tree peony is an important horticultural plant worldwide of great ornamental and medicinal value. Long terminal repeat retrotransposons (LTR-retrotransposons) are the major components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their sequence characteristics, genetic distribution and transcriptional activity; however, no info...
متن کاملTy1-copia group retrotransposons and the evolution of retroelements in several angiosperm plants: evidence of horizontal transmission
The phylogenetic relationships among thirty-seven new Ty1-copia group retrotransposons in seven angiosperm plants were examined by reverse transcriptase and ribonuclease H sequence analysis. Distribution pattern of the retrotransposons of closely related plant species generally reflects a close phylogenetic relationship. In contrast, we found that several retrotransposon sequences from the same...
متن کاملTy1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants.
We have used the polymerase chain reaction to isolate fragments of Ty1-copia group retrotransposons from a wide variety of members of the higher plant kingdom. 56 out of 57 species tested generate an amplified fragment of the size expected for reverse transcriptase fragments of Ty1-copia group retrotransposons. Sequence analysis of subclones shows that the PCR fragments display varying degrees ...
متن کاملCharacterization of Chromosome Inheritance of the Intergeneric BC2 and BC3 Progeny between Saccharum spp. and Erianthus arundinaceus
Erianthus arundinaceus (E. arundinaceus) has many desirable agronomic traits for sugarcane improvement, such as high biomass, vigor, rationing ability, tolerance to drought, and water logging, as well as resistance to pests and disease. To investigate the introgression of the E. arundinaceus genome into sugarcane in the higher generations, intergeneric BC2 and BC3 progeny generated between Sacc...
متن کاملActivation of Ty1-copia Group Retrotransposons of Dendrobium officinale under Abiotic Stress Conditions
By using universal primer Ty1-copia retrotransposon reverse transcriptase (RT), the conserved reverse transcriptase domain of about 260 bp, which was induced by cold stress and osmotic stress, was amplified by RTPCR from the Dendrobium officinale in this study, indicating that the retrotransposon could be activated by stress conditions. The amplicons were recovered and cloned for sequencing and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017